

PRELIMINARY RESULTS FROM TOURMALINE RIDGE 64NORTH PROJECT, ALASKA

Highlights

- Detailed logging and sample preparation complete for five (5) diamond drill holes for 2,324m completed at Tourmaline Ridge Prospect.
- Tourmaline Ridge Prospect lies ~5km along strike from the 12m oz Pogo Gold Mine, with the drill holes targeting a Pogo-like system based on reinterpretation of geology and structure.
- Select assay results from the first two (2) sample dispatches of seven (7) have been received.
- The selective samples come from two (2) holes of the five-hole program and account for 16% of the sample results (114 of 700).
- Although no significant gold results (>0.5g/t) have been returned to date, low-level elevated gold (0.04 – 0.2g/t) is common and shows distinctive trends in both holes associated with Pogo Style quartz veins.
- The presence of detectable gold throughout many of the samples in 22TR001 and 22TR003 indicates that a gold-bearing hydrothermal event has occurred across a wide area at Tourmaline Ridge.
- The initial assay results are primarily from 22TR001 and are not considered wholly representative of the gold mineralisation potential in the 586 (84%) pending samples.
- All results from the remaining five (5) sample batches (84%) are expected in late November based on current lab turn-around times.

Resolution Minerals Ltd (RML or **Company**) (ASX:**RML**) has received the first two batches of gold assay results from the recently completed diamond drilling program at Tourmaline Ridge at the 64North Project in Alaska (ASX:RML Announcement 11/8/2022). The RML exploration team identified Tourmaline Ridge as prospective for hosting high-grade gold mineralisation and lies approximately 5km along the trend from Northern Star's (ASX:NST) Pogo Gold Mine and recently discovered Goodpaster Deposit.

Tourmaline Ridge was identified as a priority drill target after a thorough re-interpretation of the geological and structural model in the area, which showed surface gold mineralisation to represent narrow, antithetic hanging wall veins that are interpreted to sit directly above a dilational, northwest-dipping Pogo-style shear (ASX:RML Announcement 8/6/2022). The five (5) completed drill holes are the first holes oriented to intersect the northwest-dipping shear at Tourmaline Ridge and ranged in depth from approximately 270m to 650m for a total of 2,324m. The holes span a strike length of over 1.2km of the Tourmaline Ridge geochemical trend and are considered a preliminary test of the geological and structural model and gold mineralisation potential of the prospect.

CAPITAL STRUCTURE

BOARD

Ordinary Shares Issued 882 M

Options and rights
Listed options 74 M @ 12c
Listed options 587 M @ 1.5c
Unlisted options 13 M @ 10c
Unlisted options 79 M @ 3c
Unlisted performance rights 38 M
Unlisted performance shares 13 M

Last Capital Raise May-22 - Placement \$1.9M @ 1.2C

Craig Farrow - Chair Steve Groves - MD Duncan Chessell - NED Dr Paul Kitto - TED Andrew Shearer - NED Jarek Kopias - Co Sec

Managing Director Steve Groves commented:

We are pleased to see a timely turnaround from the lab on this sample batch which allows us to start to build our understanding of the gold mineralisation potential at Tourmaline Ridge in light of the new geological interpretation.

Although, at first glance, the mineralisation appears to be insignificant, there is elevated gold throughout and important understanding is gained upon detailed examination of the results. The samples selected were mostly from 22TR001, which was approximately 850m away from the closest hole (22TR005) and over 1.2km away from 22TR003 & 22TR004. 22TR001 was particularly strongly altered with evidence of multiple hydrothermal fluid events and a higher degree of structural complexity compared to the other holes. Elevated gold results from this batch were associated with narrow Pogo-style quartz veins with sulphide minerals and, if thicker occurrences of this type of material occur at Tourmaline Ridge, then there is good potential for economic accumulations of gold at the prospect.

This sample batch represents only about 16% of the material sampled and given the distance from other holes and the complexities of 22TR001, are not considered by the RML team as representative of the gold potential from the remaining 84% of submitted sample material.

RML team getting core samples ready for transport for logging and sample preparation.

ASX RELEASE

Results Discussion

The bulk of the results from this sample batch are from selected intervals in 22TR001, with minor intervals from 22TR003. RML's geologists noted significant variability in alteration and sulphide content between 22TR001, which is proximal to the Aurora Creek Fault (trending WNW-ESE), and holes 22TR002 – 22TR005 located some 850m to 1.2km along strike further to the south-west (Figure 1).

Although no significant gold results (> 0.5g/t) have been returned to date, low-level elevated gold (0.04 – 0.2g/t) is common and shows distinctive trends in both holes:

- 22TR001- low-level gold is associated with Pogo-style arsenopyrite/quartz veins ± pyrrhotite and pyrite.
- 22TR003 low-level gold is associated with white-grey Pogo-style quartz veins with rare bismuthinite and pyrite.

The presence of detectable gold throughout many of the samples in 22TR001 and 22TR003 indicates that a gold-bearing hydrothermal event has occurred across a wide area at Tourmaline Ridge. Potential still exists for higher grades to occur within the prospect where the hydrothermal fluids have encountered favourable structural and chemical conditions to allow for the development of thicker quartz veins and concentrated gold deposition.

Furthermore, one of the key characteristics of Pogo-style mineralisation is the low-sulphide quartz veins. Typical veins contain around 3% total sulphides, with an assemblage including pyrite, arsenopyrite, pyrrhotite and bismuthinite (Larimer, 2016) similar to that seen in 22TR002 – 22TR005.

Tourmaline Ridge represents a large area of some 1850m x 750m and exhibits a prominent gold in soil anomaly at the surface (Figure 1). The first assay results represent 16% of the total assayed material from five broadly spaced drill holes testing a new interpretation across this large area. Although the initial sampling has not revealed any high gold grades, they confirm that a significant, gold-bearing hydrothermal event has occurred at the prospect. Consequently, the initial assay results from the 114 rush samples (mainly from 22TR001) are not considered representative of the gold mineralisation potential in the remaining 586 (84%) samples (Figures 2 & 3).

Results for pending sampled material are required for RML to understand the mineral potential of Tourmaline Ridge better and will guide future exploration programs for the prospect.

Next Steps

All results from the remaining five (5) dispatches (84%) are expected in late November based on current laboratory turn-around times, at which point RML will update the market.

Geological Logging Summary

HoleID	Lithologies	Alteration	Sulphides
22TR001	Biotite-quartz-feldspar granite gneiss with minor calc-silicate	Multiple alteration events likely associated with proximity to the major Aurora Creek Fault Zone. Dolomite and calcite. Fuchsite appears to be associated with quartz carbonate veins. Late silica flooding associated with fault breccias.	Abundant arsenopyrite with lesser pyrite and pyrrhotite. Overall sulphide content 5-10%. Sulphide veins occur close to structures (1-5m) with disseminations out to 10m.
22TR002	Biotite-quartz-feldspar granite gneiss	Common tourmaline and chlorite. Oxidised to a significantly greater depth than the other holes (>400m).	< 5% sulphides dominated by pyrite with minor arsenopyrite and bismuthinite and stibnite.
22TR003	Quartz-feldspar-biotite granite gneiss with minor calc-silicate	Chlorite-sericite-tourmaline haloes around chlorite / pyrrhotite veinlets.	< 5% sulphides, common bismuthinite blebs in early quartz veins. Minor arsenopyrite.
22TR004	Quartz-feldspar-biotite granite gneiss	Chlorite-sericite-tourmaline haloes around chlorite / pyrrhotite veinlets.	< 5% sulphides, common bismuthinite blebs in early quartz veins. Minor arsenopyrite.
22TR005	Foliated biotite granite with large rafts of country rock	Weak, pervasive chlorite-sericite-dolomite with common calcite veinlets.	< 5% sulphides, pyrite dominant with rare arsenopyrite and bismuthinite.

Tourmaline Ridge Completed Drill Hole Locations

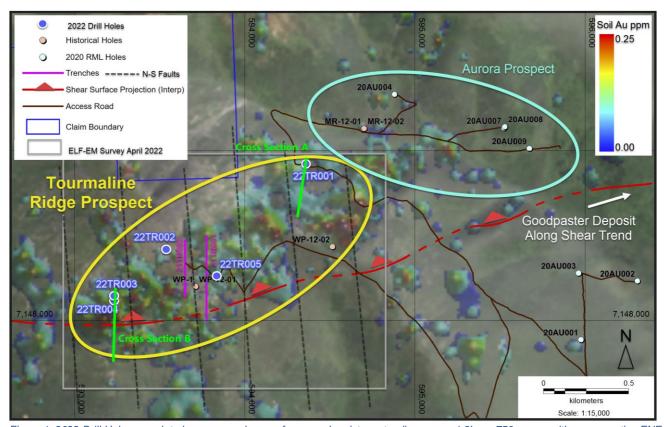


Figure 1. 2022 Drill Holes completed over anomalous surface geochemistry extending over a 1.8km x 750m area with a prospective ENE-SSW trending shear (red line) extending along strike from the Goodpaster Deposit to the northeast, with cross-cutting NS faults. Partial assay results have been received for 22TR001 and 22TR003.

Figure 2. Drill Section 22TR001 including selective sampling presented as Green = Pending Assay Results, Blue = Received Assay Results, Grey = Not Assayed. There are no significant intervals (> 0.5g/t Au) in the received assay results to date. Section A location in Figure 1 plan.

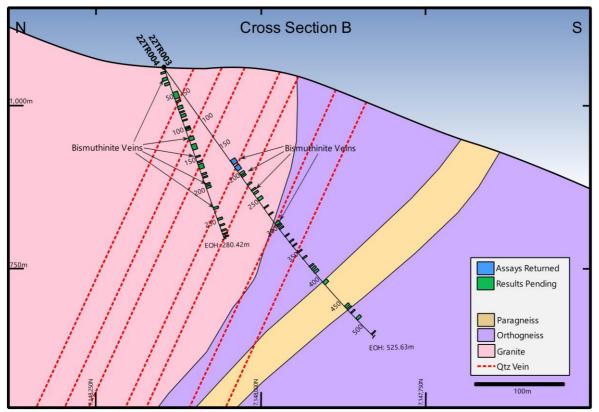


Figure 3. Drill Section 22TR003 and 22TR004 including selective sampling presented as Green = Pending Assay Results, Blue = Received Assay Results, Grey = Not Assayed. There are no significant intervals (> 0.5g/t Au) in the received assay results to date. Section B location in Figure 1

ASX RELEASE

About the 64North Project, Alaska

The 64North Project is adjacent to Northern Star's (ASX:NST) Pogo Gold Mine, 120km from Fairbanks, Alaska in the Tintina Gold Province. NST's operating world class high grade Pogo Gold Mine has an endowment of 12M oz of gold and started production in 2006, producing approximately 4M oz Au @ 300,000oz/year at over 13g/t Au from 2006 to 2018. RML holds a 42% interest in the 64North Project and is earning up to a 60% interest in stages (51% and 60%). RML has a conditional pathway to 80% interest in a single "Best Block" at RML's election. RML can form a JV at any stage and holds a first right over the Vendors interest. The Project is owned by Millrock Resources (Vendor) (TSXV:MRO) see RML ASX Announcement 31 January 2022 for full details. The total size of the claim blocks in 357km².

For further information please contact the authorising officer Steve Groves:

Steve Groves

Managing Director Resolution Minerals Ltd P: +61 8 6118 7110

E: <u>steve@resolutionminerals.com</u>
W: <u>www.resolutionminerals.com</u>

Julian Harvey

Investor Communications Resolution Minerals Ltd M: +61 404 897 584

j.harvey@resolutionminerals.com

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Steve Groves who is a member of the Australian Institute of Geoscientists. Mr Steve Groves is a full-time employee of the company and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Steve Groves consents to the inclusion in the report of the matters based on his information in the form in which it is appears and confirms that the data reported as foreign estimates are an accurate representation of the available data and studies of the material mining project. This report includes results that have previously been released under JORC 2012 by the Company as 26 November 2019 as "2019 AGM Managing Director's Presentation", 14 May 2020 as "Exploration Update - 64North Project Alaska", on 24 June 2020 as "Drilling Update - 64North Project Alaska", 13 July 2020 as "Investor Presentation - Noosa Mining Virtual Conference", 25 August 2020 as "Drilling Commenced at Reflection Prospect - 64North", 10 September 2020 as "Assays and Operations Update 64North Project Alaska", 24 September 2020 as "Boundary Prospect Results at Pogo Trend - 64North Project", 29 September 2020 as "Drilling Results West Pogo Block – 64North Project, Alaska", 30 October 2020 as "Quarterly Report September 2020", 5 November 2020 as "Alaska Miners Association Technical Presentation", 14 December 2020 as "New Claims Added East Pogo - 64North Project, Alaska", 18 January 2021 as "Outcropping Gold System Identified - Assay Results 2020, 64North, Alaska", 9 February 2021 as "Positive revision of JV agreement for 64North project, Alaska", 17 May 2021 as "Sunrise Prospect Assays confirm Fort Knox style system", 5 July 2021 as "Drilling Program Completed at East Pogo Gold Prospect", 6 August 2021 as "East Pogo Drilling Update - 64North Project", 31 January 2022 as "Interest earned 64North Project", 24 February 2022 as "Positive trenching results identify Pogo-style drill targets – Tourmaline Ridge 64North Project", 25 February 2022 as "Positive Technical study completed – Cu-Au-Mo Porphyry Prospects – Divide Block 64North Project", 28 April 2022 as "Tourmaline Ridge Exploration Update, 64North Project Alaska", 8 June 2022 "High Priority Gold Drill Targets Defined at 64North Project" and 11 August 2022 "Drilling Completed on High Priority Gold Targets at 64North"

The Company is not aware of any new information or data that materially affects the information included in this announcement.

Appendix 1. Summary of drilling results at the Tourmaline Ridge Prospect, West Pogo Block, 64North Project, Alaska.

Table 1a: Summary of RML drill intervals 2022, Tourmaline Ridge Prospect, 64North Project, Alaska.

Hole ID	Prospect	From (m)	To (m)	Interval	Au (g/t)	Number Of Samples
22TR001	TR	0.00	94.00	(m)	PENDING	0
22TR001	TR	94.00	105.75	11.75	NSI	15
22TR001	TR	105.75	229.60	-	PENDING	16
22TR001	TR	229.60	249.00	19.40	NSI	22
22TR001	TR	249.00	313.24	-	PENDING	37
22TR001	TR	313.24	321.90	8.66	NSI	13
22TR001	TR	321.90	361.10	-	PENDING	0
22TR001	TR	361.10	371.00	9.90	NSI	12
22TR001	TR	371.00	443.90	-	PENDING	0
22TR001	TR	443.90	446.00	2.10	NSI	4
22TR001	TR	446.00	514.00	-	PENDING	0
22TR001	TR	514.00	519.60	5.60	NSI	7
22TR001	TR	519.60	540.00	-	PENDING	0
22TR001	TR	540.00	545.00	5.00	NSI	8
22TR001	TR	545.00	554.20	-	PENDING	0
22TR001	TR	554.20	565.00	10.80	NSI	12
22TR001	TR	565.00	599.24 (EOH)	-	PENDING	4
22TR002	TR	0.00	648.92 (EOH)	-	PENDING	234
22TR003	TR	0.00	175.00	-	PENDING	31
22TR003	TR	175.00	183.00	8.00	NSI	11
22TR003	TR	183.00	187.00	-	PENDING	0
22TR003	TR	187.00	194.00	7.00	NSI	10
22TR003	TR	194.00	525.63 (EOH)	-	PENDING	75
22TR004	TR	0.00	280.42 (EOH)	-	PENDING	90
22TR005	TR	0.00	269.60 (EOH)	-	PENDING	99

^{*} TR = Tourmaline Ridge. Green = Pending Assay Results, Blue = Received Assay Results

Table 1b: RML drill collar location for the Tourmaline Ridge Prospect, 64North Project, Alaska.

Hole ID	Easting	Northing	Elevation (m)	Azimuth	Dip	EOH Depth (m)
22TR001	594353	7148911	759	187.1	-49.4	599.24
22TR002	593616	7148388	1134	184.0	-52.9	648.92
22TR003	593394	7148146	1058	166.0	-54.8	525.63
22TR004	593394	7148146	1058	169.9	-70.3	280.42
22TR005	593832	7148230	1091	163.7	-60.2	269.60

ASX RELEASE

Notes for Tables 1a and 1b

- 1. Coordinates are in NAD83, Zone 6.
- 2. Elevation and Drillhole Length are in metres.
- 3. Azimuth is in Degrees Grid North. Dip is in degrees.
- 4. Collar positions are surveyed using a DGPS with lateral accuracy of ± 0.1 metres and a vertical accuracy of ± 0.1 metres.
- 5. g/t (grams per tonne), ppm (parts per million), ppb (parts per billion), NSI (no significant intersection).
- 6. Selective sampling was applied.
- 7. Significant results are shown for intersections ≥0.5g/t Au with no more than 1m of internal dilution.
- 8. 16% of results are being reported. The remaining 84% will be reported once received (expected late November).

Appendix 2. The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of the exploration results for the 64North Project – Alaska.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria **JORC Code explanation** Commentary Sampling Nature and quality of sampling (e.g., cut Sampling was undertaken using channels, random chips, or specific standard industry practices and a techniques specialised industry standard measurement standard operating procedure to ensure continuity of work practices tools appropriate to the minerals under investigation, such as down hole gamma between staff. The sections of the sondes, or handheld XRF instruments, etc.). core that are selected for assaying These examples should not be taken as are marked up and then recorded limiting the broad meaning of sampling. on a sample sheet for cutting and sampling at the certified assay Include reference to measures taken to laboratory. Samples of HQ core ensure sample representivity and the are cut just to the right of the appropriate calibration of any measurement orientation line where available tools or systems used. using a diamond core saw, with Aspects of the determination of mineralisation that are Material to the Public Report. half core sampled lengthways for assay. Half core was sampled • In cases where 'industry standard' work has length wise for assay. QAQC been done this would be relatively simple samples (standards and blanks) (e.g., 'reverse circulation drilling was used to are inserted into the sequences as obtain 1 m samples from which 3 kg was per industry best practice the pulverised to produce a 30 g charge for fire details of which are set out below assay'). In other cases, more explanation may in sub-sampling techniques be required, such as where there is coarse Au section. that has inherent sampling problems. Unusual The HQ diamond core was commodities or mineralisation types (e.g., sampled as half core at submarine nodules) may warrant disclosure geologically defined or significant of detailed information. alteration and mineralisation boundaries to ensure adequate sample representivity. Diamond core sample intervals were set between 0.1m minimum and 1.5m maximum. Individual samples weigh less than 3kg to ensure total preparation at the laboratory pulverisation stage

Criteria	JORC Code explanation	Commentary
		to produce 30gram charge for fire assay. The sample size is deemed appropriate for the grain size of the material being sampled.
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc.). 	 Oriented HQ diamond core triple tube, down hole surveys every 100 feet (~30m), using a Reflex ACT-III tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core was processed at a secure logging warehouse in Fox for the full duration of the program. Recoveries were recorded for all holes, into a logging database to 3cm on a laptop computer by a qualified geologist using the drillers recorded depth against the length of core recovered. No significant core loss was observed. Triple tube HQ was used to maximise core recovery. No relationship between sample recovery and grade is identified
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Sample logging is carried out by Resolution Minerals qualified geologists using a project specific logging procedure. Data recorded includes, but is not limited to, lithology, structure, quality, recovery, alteration, sulphide mineralogy and presence of visible gold. This is supervised by senior geologists familiar with the mineralisation style and nature. Resolution's Exploration Manager and Managing Director monitor sampling remotely using photographs and logs. Lithology is measured to ~3cm scale marked from the closest core block. Rock codes have been set up specifically for the project. Logging is to a sufficient level of detail to support appropriate Mineral Resource estimation and mining studies. Logging is both qualitative by geological features and quantitative by geotechnical parameters. Photographs are taken of all samples prior to lab submission.

Criteria	JORC Code explanation	Commentary
Sub-	If core, whether cut or sawn and whether	 All drilled intervals are logged and recorded as standard operating practice. Drill core was cut at a secure
sampling techniques and sample preparation	 quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 logging warehouse in Fox, then submitted for analysis at the ALS laboratory in Fairbanks. Selective sampling techniques were used. Half HQ core was taken as the sample and is considered representative and appropriate for exploration stage. Selected core samples were then submitted for analysis at the BV laboratory in Fairbanks. Appropriate high, medium and low gold and base metal standards (CRM's) are used on a 1:50 basis (2%). Blanks are inserted on a 1:50 basis (2%). Laboratories introduce QAQC samples and complete duplicate check assays on a routine basis. Sample preparation is considered appropriate and was undertaken by ALS Vancouver (PREP-31) using 70% to <2mm Crush and Pulverize 85% to <75 um. Samples were split and were subsequently analysed at ALS laboratory in Vancouver, Canada. Gold was analysed by Fire Assay (Au-AA23) with an AAS finish using a 30gram nominal sample weight. No multielement has been undertaken. Sample size as defined above is considered appropriate to the material sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable 	 The sampling digest methods are considered appropriate and industry standard. FA430/AA with AAS finish was applied. No use of portal XRF is reported. QA/QC procedures included the insertion of appropriate high, medium and low gold Certified Reference Materials (CRM) in a 1:50 basis (2%), Blank material on a 1:50 basis (2%) for a total insertion rate of 4%, which is appropriate to the exploration

Criteria	JORC Code explanation	Commentary
	precision have been established.	after results are received utilising Company QC and supplied internal laboratory QC information. Laboratories introduce QAQC samples and complete duplicate check assays on a routine basis. No abnormalities were detected.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At least two geologists have reviewed the physical core in addition to offsite RML and Millrock geologists reviewing the logging and photographs. No twinned drillholes. Drilling information is digitally entered and stored following documented sampling procedures and backed up electronically. No adjustment has been made to the primary assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	All maps and locations are in UTM grid (NAD83 Z6N) and have been measured by DGPS with a lateral accuracy of ±0.1 metres and a vertical accuracy of ±0.1 metres.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is insufficient to establish the degree of geological and grade continuity required for a Mineral Resource estimation. No sample composting has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The relationship between the drilling orientation and the orientation of key mineralised structures has not been confirmed.
Sample security	The measures taken to ensure sample security.	 A secure chain of custody protocol has been established with the site geologist overseeing packaging and transportation of core directly to a lockable logging warehouse in Fox, until being directly transported by the logging geologist to a secure room at ALS

Criteria		JORC Code explanation	Commentary
			laboratory in Fairbanks.
Audits reviews	or	 The results of any audits or reviews of sampling techniques and data. 	 No review has been undertaken at this time.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Resolution Minerals Ltd holds a 42% interest in the 64North Project by way of exploration and earn-in agreement with Millrock Resources (TSXV: MRO). Resolution has the right to earn up to 60% on the entire project and an 80% interest on a single "best block". The latest update and full details on the agreement was announced by Resolution 31 January 2022. The total tenement area comprising the 64North Project consists of 655 State of Alaska claims (35,700 hectares or 357km²). The 64North Project is located approximately 120km east of Fairbanks. The tenure is in good standing and no known impediments exist.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Previous exploration work on the 64North Project included; Surface Geochemical Sampling: Pan concentrates, fine silts, silts, soils & rock chips. Airborne Geophysics: EM, LiDAR, Radiometric & Magnetics. Ground Geophysics: Magnetics, Radio-metrics, EM, VLF-EM, NSAMT & CSAMT. Exploration Drilling: 46 Diamond.
Geology	Deposit type, geological setting, and style of mineralisation.	 Resolution Minerals Ltd is primarily exploring for Reduced Intrusion Related Gold mineralisation (e.g., Pogo-style & Fort Knox-style) and Copper-Molybdenum-Gold Porphyry mineralisation within the Yukon-Tanana Terrane of the north-western Cordillera, Alaska.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified 	 See Appendix 1 summary table 1a and 1b of drilling results. An accurate dip and strike and the controls on mineralisation are yet to be determined and the true width of the intersections is not yet known.

Criteria	JORC Code explanation	Commentary
	on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Sample length weighted averaging was used to calculate the aggregated intervals of significant mineralisation. A cut off of 0.5 g/t Au has been applied for significant intersections. No top cut has been applied. No more than 1m of internal dilution has been applied. No metal equivalents have been used.
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Downhole length has been reported, as true width is not known, as insufficient work has been undertaken to understand the true width of intervals. An internal structural review is being undertaken.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Plan view of collar locations have been included in the body of this report. Cross section of drilling results, highlighting received assays, pending assays and non-assayed drill core.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The reporting is considered balanced. Comprehensive reporting of all drilling, trench, soil samples has occurred in historical reports and reported when appropriate here.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Resolution Minerals completed a ground ELF-EM survey. See ASX:RML announcement released on the 08/06/2022 for details. Resolution Minerals completed a heli-borne magnetic survey. See ASX:RML announcement released on the 30/10/2020 for details. Resolution Minerals completed a ZTEM survey. See ASX:RML announcement released on the

Criteria	JORC Code explanation	Commentary
		 25/08/2020 for details. Millrock Resources completed a CSAMT survey. See TSX.V: MRO announcement, released on the 9/10/2019 for details.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A range of exploration techniques are being considered to progress exploration including drilling.